

Cite this: *Chem. Commun.*, 2024, **60**, 6292

Received 24th April 2024,
Accepted 24th May 2024

DOI: 10.1039/d4cc01950d

rsc.li/chemcomm

Photocatalytic CO₂ reduction with iron porphyrin catalysts and anthraquinone dyes†

Huiqing Yuan,^{*ab} Yuanhai Yu,^b Shuang Yang,^b Qin Qin Lei,^b Zhiwei Yang,^b Bang Lan^{*a} and Zhi Ji Han ^{ab}

Herein we studied visible-light-driven CO₂ reduction using a series of tetra-phenylporphyrin iron catalysts and inexpensive anthraquinone dyes. Varying the functional groups on the phenyl moieties of the catalysts significantly enhances the photocatalytic activity, achieving an optimal turnover number (TON) of 10 476 and a selectivity of 100% in the noble-metal-free systems. The highest activity found in a bromo-substituted catalyst is attributed to favorable electron transfer from the photosensitizer to the iron porphyrin.

The development of artificial photosynthetic systems for converting solar energy into renewable chemicals is one of the long-standing goals in chemical society.¹ Photocatalytic reduction of CO₂ into value-added chemicals is a promising avenue for both utilizing sunlight and closing the anthropogenic carbon cycle.² Over the past few decades, significant advancements have been made in homogeneous photocatalytic CO₂ reduction. However, the majority of these systems have predominantly employed complexes with precious metals (such as Ru, Ir, and Re) as either photosensitizers or catalysts.³ The development of photocatalytic systems with high activity and selectivity using abundant elements poses a significant challenge, yet it is crucial for advancing photocatalytic CO₂ reduction technologies.⁴

Recently, a series of non-noble metal complexes have been reported as active catalysts in noble-metal-free systems for photocatalytic CO₂ reduction.⁵ For instance, a cobalt quaterpyridine complex was shown to catalyze CO₂ to CO with a high turnover number (TON) of 19 000 using an organic triazatriangulenium salt as the photosensitizer (PS).^{5a} Pyridinethiolate Ni(II) complexes have shown high activity in converting CO₂ to HCOOH.^{5b} This system achieved a TON_{Ni} of 14 000 in 10 h when using eosin Y as the organic PS. Advancements have also been

made with terpyridine-based iron complexes in conjunction with 4CzIPN dyes.^{5c} Other molecular catalysts such as Fe,^{5d-f} Co,^{5g,h} Ni,⁵ⁱ or Mn,^{5j} have been found to reduce CO₂ to CO when employing copper diimine diphosphine PSs, achieving TONs up to 11 800 under optimal conditions.^{5h}

Iron porphyrin complexes were initially studied as one of the most efficient classes of molecular electrocatalysts for CO₂ reduction to CO.⁶ Later, Robert and Bonin reported that the iron tetraphenylporphyrin complexes functionalized with trimethylammonio groups and **Fe2** were also active in photocatalytic systems for reducing CO₂ to CO and/or CH₄, with TONs ranging from 79 to 367.^{3k} In our laboratory, we found that **Fe2** exhibited exceptional activity in photocatalytic CO₂ reduction, achieving a TON as high as 21 616 when using a copper purpurin complex or aminoanthraquinone dyes as the PSs.⁷ A recent study from the Cautsolelos and Charalambidis groups showed that fluorine and trimethylammonium substituted porphyrins are highly active for photocatalytic CO₂ reduction, achieving up to 5500 TONs.⁸ In this study, to unravel factors that govern activity for the development of advanced photocatalytic systems, we present a systematic structure–function study using iron porphyrins with different electronic substituents on the meso-phenyl backbone (Fig. 1). Our results show that the porphyrin with more electron-withdrawing groups exhibits higher activity in photocatalytic CO₂ reduction, suggesting that the reduction steps either from Fe(I) to Fe(0) or from Fe(II)–CO₂ to Fe(I)–CO₂ are rate-limiting in catalysis.

The bromo and methyl substituted porphyrins were synthesized *via* condensation of the corresponding benzaldehyde and pyrrole following hydrolysis (ESI†). The methoxy and hydroxy versions of porphyrins were characterized using nuclear magnetic resonance (NMR) spectroscopy (Fig. S1–S4, ESI†) and high-resolution mass spectrometry (HRMS) (Fig. S7 and S8, ESI†). Iron porphyrins **Fe1** and **Fe3** were prepared from the corresponding porphyrins and FeCl₂·4H₂O in methanol at 50 °C for 48 hours. The maximum absorption wavelengths for **Fe1**, **Fe2**, and **Fe3** are all located at 416 nm in *N,N*-dimethylformamide (DMF), with molar extinction coefficients of 97 550 M^{−1} cm^{−1},

^a School of Chemistry and Environment, Jiaying University, Meizhou, Guangdong 514015, China. E-mail: yuanhq3@mail2.sysu.edu.cn, jyulb6@163.com

^b MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China. E-mail: hanzhiji@mail.sysu.edu.cn

† Electronic supplementary information (ESI) available. See DOI: <https://doi.org/10.1039/d4cc01950d>

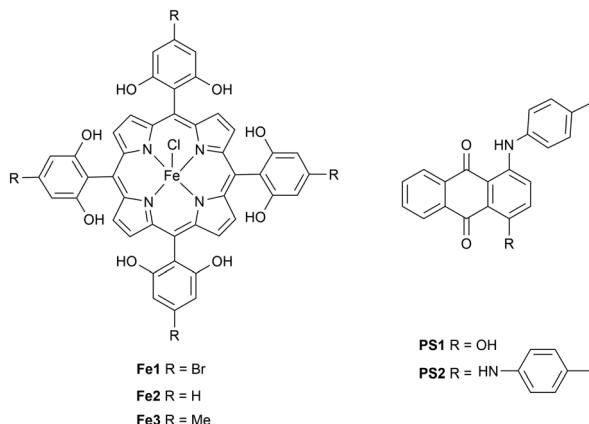
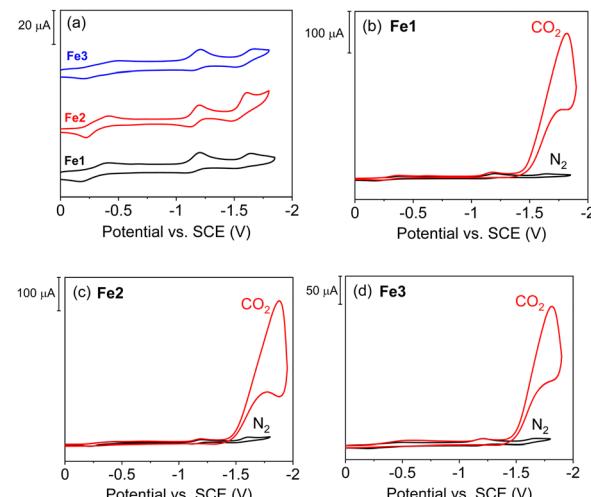



Fig. 1 Structures of PSs and catalysts in the study.

87 370 M⁻¹ cm⁻¹, and 64 210 M⁻¹ cm⁻¹, respectively (Table 1 and Fig. S9–S11, ESI[†]).

Cyclic voltammograms (CVs) recorded in DMF under N₂ (Fig. 2a and Table S1, ESI[†]) showed that the reduction potentials of the Fe^{III/II} couples exhibited cathodic shifts in the order of Fe1, Fe2, and Fe3, which is consistent with increasing electron-donating properties of the porphyrin ligands. However, their Fe^{II/I} and Fe^{I/0} redox couples are both at similar potentials (Fig. 2a). To investigate these complexes for CO₂ reduction, CVs were performed in CO₂-saturated DMF (Fig. 2b–d). Consistent with the results reported for Fe2,^{6b} both Fe1 and Fe3 displayed significant increase in currents in the presence of CO₂ at potentials corresponding to the Fe^{I/0} couples, suggesting that all three iron porphyrins are active catalysts for CO₂ reduction. Compared with Fe2, the onset catalytic potential slightly shifts from –1.44 V to –1.42 V for Fe1 and to –1.46 V for Fe3 (Table 1 and Fig. S12, ESI[†]).

To study the activity of iron catalysts in noble-metal-free photocatalytic systems, we selected two inexpensive anthraquinone dyes 1-hydroxy-4-[(4-methylphenyl)amino]-9,10-anthraquinone (PS1) and 1,4-bis[(4-methylphenyl)amino]-9,10-anthraquinone (PS2) as the PSs (Fig. 1). UV-vis spectroscopy showed that these two anthraquinones displayed high molar extinction coefficients (11 230 M⁻¹ cm⁻¹ for PS1 and 16 550 M⁻¹ cm⁻¹ for PS2) at the visible region (Fig. S13 and S14, ESI[†]). In addition, CVs of PS1 and PS2 both exhibited reversible reduction waves at –0.733 V and –0.885 V, respectively (Fig. S19, ESI[†]). Although 1-amino-2-bromo-4-hydroxy-9,10-anthraquinone has been reported by our laboratory as one of the most active organic dyes for CO₂ reduction, it is over 3900 times more expensive (based on Sigma Aldrich prices in 2024) compared with PS1 and PS2.

Fig. 2 (a) Cyclic voltammograms of 1.0 mM Fe1 (black), Fe2 (red) and Fe3 (blue) in 5 mL DMF containing 0.1 M TBAPF₆ under N₂; (b), (c), and (d) 1 mM catalyst under N₂ (black) and CO₂ (red).

Photocatalytic CO₂ reduction was conducted in CO₂-saturated DMF (5 mL) containing the anthraquinone PS, iron porphyrin catalyst, and 1,3-dimethyl-2-phenyl benzimidazoline (BIH) as the sacrificial reductant, under irradiation by a blue light-emitting diode (LED). The use of blue LEDs in our study was based on the absorption spectra of the reduced anthraquinones observed in our previous study.^{7b} Gas chromatography was used to monitor the gaseous products generated from the systems. In our experiments, no H₂ was observed throughout the catalytic process and the selectivity for the reduction of CO₂ to CO reached 100%.

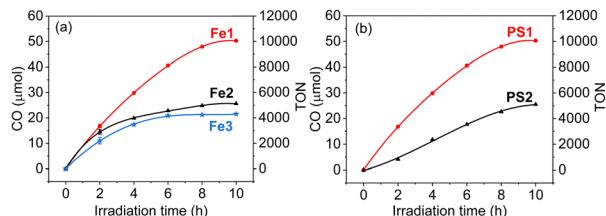
Optimization of the photocatalytic system was achieved by varying the concentration of each component. With fixed concentrations of BIH (30 mM) and Fe1 (1 μM), increasing the concentration of PS1 led to a higher overall yield of CO (Fig. S20, ESI[†]). However, no further increase in activity was observed when the [PS1] exceeded 0.2 mM. When the [PS1] and [Fe1] were fixed at 0.2 mM and 1.0 μM, respectively, altering the [BIH] showed increase in activity up to 30 mM (Fig. S21, ESI[†]).

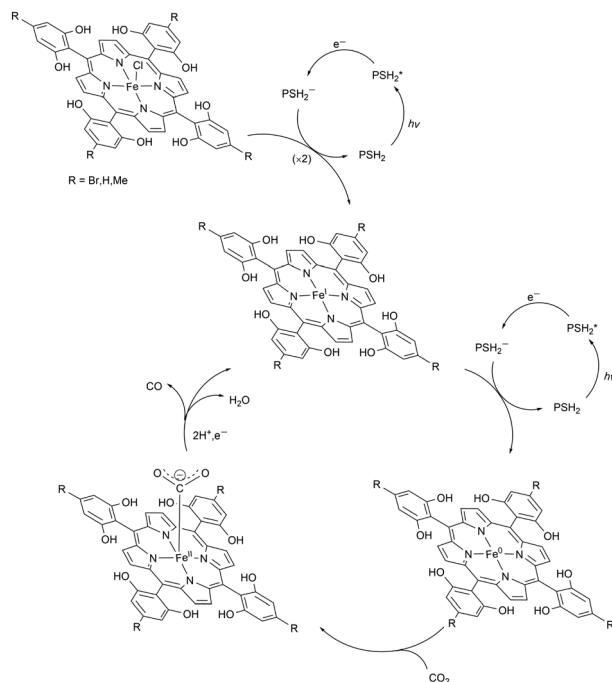
Under the optimal conditions (0.2 mM PS1, 1 μM Fe, and 30 mM BIH), the system's activity followed an order of Fe1 > Fe2 > Fe3 (Fig. 3a and Table 1). When using PS1, the amounts of CO produced after 10 hours of illumination were 50.3 μmol (for Fe1), 25.6 μmol (for Fe2), and 21.5 μmol (for Fe3), corresponding to TONs (vs. Fe) of 10 052, 5115, and 4305, respectively. When employing Fe1 as a catalyst, PS1 exhibited higher activity for the photocatalytic reduction of CO₂ to CO compared with

Table 1 Photophysical, electrochemical, and photocatalytic CO₂ reduction of catalyst

Cat	λ_{max} abs/nm (ε M ⁻¹ cm ⁻¹)	Onset catalytic potential (V vs. SCE) ^a	CO ^b (μmol) ₁	CO ^c (μmol) ₂	TON ₁ ^b	TON ₂ ^c	ϕ^d
Fe1	97 550	–1.42	50.3	25.6	10 052	5112	0.95%
Fe2	87 370	–1.44	25.6	17.6	5115	3519	0.63%
Fe3	64 210	–1.46	21.5	16.6	4305	3330	0.43%

^a Under CO₂ atmosphere. ^b 1 μM catalyst, 0.2 mM PS1 and 30 mM BIH. ^c 1 μM catalyst, 0.2 mM PS2 and 30 mM BIH. TON = $n(\text{CO})/n(\text{catalyst})$. ^d 5 μM catalyst, 0.2 mM PS1 and 30 mM BIH, λ = 450 nm, ϕ calculated in 2 h.




Fig. 3 CO generation in CO_2 -saturated DMF solutions containing (a) 30 mM BIH, 1.0 μM catalyst, 0.2 mM **PS1**; (b) 30 mM BIH, 1.0 μM **Fe1**, 0.2 mM **PS1** and **PS2** under blue LED.

PS2 (Fig. 3b). Analysis of the electrochemical data for **PS1** and **PS2** (Table S2 and Fig. S19, ESI[†]) shows that the $-\text{PhMe}$ group acts as an electron-donating group while the $-\text{OH}$ group is electron-withdrawing on AQ. These distinct electronic groups may create an internal donor–acceptor property by de-symmetrizing the organic molecule, which facilitates electron-transfer of the dye.^{7b} Employing **Fe1** as the catalyst, CO quantum yields of 0.95% with **PS1** and 0.72% with **PS2** were obtained at a wavelength of 450 nm.

A series of control experiments was conducted to investigate the nature of the system. The absence of the catalyst, PS, BIH, or light resulted in no generation of CO (Table S3, ESI[†]). To study the source of CO, photolysis experiments performed in an atmosphere of $^{13}\text{CO}_2$ produced exclusively ^{13}CO as determined by GC-MS analysis (Fig. S24, ESI[†]). Moreover, no CO was observed from experiments performed under a nitrogen atmosphere (Table S3, entry 8, ESI[†]). These results thus suggested that CO originated from the reduction of CO_2 .

In addition, dynamic light scattering (DLS) and mercury poisoning experiments were employed to evaluate the system's homogeneity. DLS results revealed the absence of nanoparticles in both the pre-catalytic and post-catalytic systems (Fig. S25, ESI[†]). The introduction of excess of Hg^0 to the system showed identical photocatalytic activity (Fig. S26, ESI[†]), which ruled out contaminants from amalgam-forming metals. These findings suggest that the photocatalytic system in our study is homogeneous.

To investigate the photochemical mechanism, UV-vis spectroscopy was utilized. The UV-vis results (Fig. S27 and S28, ESI[†]) revealed no spectral change in the photosensitizer by adding BIH and **Fe1**, which rules out a static quenching mechanism. The fluorescence lifetimes for **PS1** and **PS2** were found to be 1.90 ns and 3.51 ns, respectively (Fig. S29 and S30, ESI[†]). Subsequently, the reductive quenching rate constants (k_q) for **PS1** and **PS2** in the presence of BIH in DMF were determined to be $8.37 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ and $1.19 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, respectively, based on the Stern–Volmer equation (Fig. S31 and S32, ESI[†]). In contrast, the oxidative quenching k_q could not be obtained due to significant spectral overlap of the Fe catalyst at both excitation and emission wavelengths (Fig. S33, ESI[†]), which has been observed in the literature.⁹ However, the substantial excess of BIH (over five orders of magnitude than the catalyst) and the fast reductive quenching k_q both suggest the photocatalytic pathway follows a reductive quenching mechanism (Scheme 1). By monitoring the UV-vis spectra of

Scheme 1 Proposed mechanism for photocatalytic CO_2 reduction with iron porphyrins.

PS1 and **PS2** during photocatalytic reduction of CO_2 (Fig. S34 and S35, ESI[†]), we observed intermediates at ~ 400 nm, which were consistent with a $3\text{e}^-/2\text{H}^+$ photoproduct PSH_2^- (Scheme 1) previously proposed by our laboratory.^{7b,10} This intermediate has been found to be highly reducing and critical in electron transfer to the Fe catalyst for CO_2 reduction.^{7b}

The UV-vis spectra of **Fe1** and **Fe3** showed fast conversion of the $\text{Fe}(\text{III})$ compound (416 nm) to an $\text{Fe}(\text{II})$ species (432 nm) within one minute, which subsequently transformed into an $\text{Fe}(\text{I})$ species (420 nm) (Fig. 4 and Scheme 1). This $\text{Fe}(\text{I})$ species decreased slowly during the CO_2 reduction process. These observations are consistent with the photocatalytic mechanism previously delineated by Robert *et al.* when using **Fe2** as the CO_2 reduction catalyst.^{7b,11} However, the identical reduction processes observed for both **Fe1** and **Fe3** suggest that these steps (from Fe^{3+} to Fe^+) are not rate-determining in photocatalysis. As detailed by Robert *et al.*, the production of CO is closely related to the formation and stability of an $\text{Fe}(\text{II})\text{CO}_2$ adduct

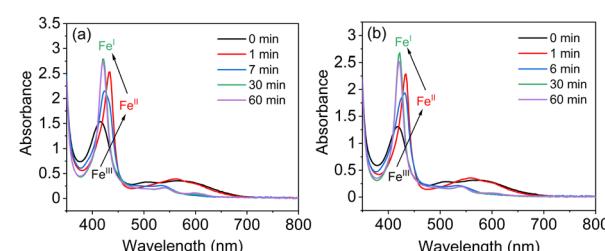


Fig. 4 UV-vis spectra of systems containing 30 mM BIH, 20 μM **PS1**, 20 μM **Fe1** (a) or 20 μM **Fe3** (b) in DMF under CO_2 , upon irradiation with blue LED light.

(generated from Fe^0 and CO_2).^{9a,12} The $-\text{OH}$ groups on the porphyrin ring enhance the stability of $\text{Fe}(\text{II})\text{CO}_2$ adduct *via* internal hydrogen bonding interaction. Further reduction instead of protonation of the $\text{Fe}(\text{II})\text{CO}_2$ for cleaving the C–O bond was found to be more favorable in **Fe2** than the non-substituted tetraphenylporphyrin Fe complex.^{11a} Thus, the reduction steps either from $\text{Fe}(\text{I})$ to $\text{Fe}(\text{0})$ or from $\text{Fe}(\text{II})\text{CO}_2$ to $\text{Fe}(\text{I})$ could be rate-determining in photocatalytic CO_2 reduction (Scheme 1).

The present study showed that the catalytic activity significantly depends on the ligand electronic factors: a faster rate in CO generation was observed with an Fe catalyst having more electron-withdrawing groups (Table 1). A rationalization of the observation is that the more electron-withdrawing ligand facilitates the reduction of $\text{Fe}(\text{I})$ or $\text{Fe}(\text{II})\text{CO}_2$. Both steps are essential in generation of the requisite $\text{Fe}(\text{0})$ intermediate and in the cleavage of C–O bond for CO_2 reduction. Indeed, the onset catalytic potentials of Fe complexes shift slightly towards more positive values for the ones with more electron-withdrawing substituents (Table 1).

In this study, we designed and synthesized two novel iron porphyrin complexes, **Fe1** and **Fe3**, which incorporate electron-withdrawing -Br and electron-donating -Me groups. By employing cost-effective anthraquinone photosensitizers (**PS1** and **PS2**) in noble-metal-free systems, we evaluated the activity of these Fe catalysts in photocatalytic CO_2 reduction, achieving a high TON of 10 476 in CO production with selectivity reaching 100%. Importantly, the results reveal that the activity for CO production follows the trend of **Fe1** > **Fe2** > **Fe3**, aligning with the onset catalytic potential of $\text{Fe}^{1/0}$. This suggests that the reduction of Fe catalyst especially from $\text{Fe}(\text{I})$ to $\text{Fe}(\text{0})$ is probably the rate-determining step in photocatalysis. This work thus offers new insights for the development of precious metal-free photocatalytic systems for CO_2 reduction.

We are grateful for the financial support provided by Sun Yat-sen University, GBRCE for Functional Molecular Engineering, Jiaying University, and the China Postdoctoral Science Foundation (2022TQ0380 H. Y.; 2022M723586 H. Y.).

Conflicts of interest

There are no conflicts to declare.

Notes and references

- (a) X. Liu, S. Inagaki and J. Gong, *Angew. Chem., Int. Ed.*, 2016, **55**, 14924–14950; (b) R. Francke, B. Schille and M. Roemelt, *Chem. Rev.*, 2018, **118**, 4631–4701; (c) J. Lv, J. Xie, A. G. A. Mohamed, X. Zhang, Y. Feng, L. Jiao, E. Zhou, D. Yuan and Y. Wang, *Nat. Rev. Chem.*, 2023, **7**, 91–105.
- (a) J. Y. Y. Loh, N. P. Kherani and G. A. Ozin, *Nat. Sustainability*, 2021, **4**, 466–473; (b) B. Su, Y. Kong, S. Wang, S. Zuo, W. Lin, Y. Fang,

Y. Hou, G. Zhang, H. Zhang and X. Wang, *J. Am. Chem. Soc.*, 2023, **145**, 27415–27423.

- (a) K. E. Dalle, J. Warnan, J. J. Leung, B. Reuillard, I. S. Karmel and E. Reisner, *Chem. Rev.*, 2019, **119**, 2752–2875; (b) R. N. Sampaio, D. C. Grills, D. E. Polyansky, D. J. Szalda and E. Fujita, *J. Am. Chem. Soc.*, 2020, **142**, 2413–2428; (c) H. Shirley, X. Su, H. Sanjanwala, K. Talukdar, J. W. Jurss and J. H. Delcamp, *J. Am. Chem. Soc.*, 2019, **141**, 6617–6622; (d) P. L. Cheung, S. C. Kapper, T. Zeng, M. E. Thompson and C. P. Kubiak, *J. Am. Chem. Soc.*, 2019, **141**, 14961–14965; (e) T. Ouyang, H.-J. Wang, H.-H. Huang, J.-W. Wang, S. Guo, W.-J. Liu, D.-C. Zhong and T.-B. Lu, *Angew. Chem., Int. Ed.*, 2018, **57**, 16480–16485; (f) K. Kamada, J. Jung, T. Wakabayashi, K. Sekizawa, S. Sato, T. Morikawa, S. Fukuzumi and S. Saito, *J. Am. Chem. Soc.*, 2020, **142**, 10261–10266; (g) Y. Hameed, P. Berro, B. Gabidullin and D. Richeson, *Chem. Commun.*, 2019, **55**, 11041–11044; (h) N. P. Liyanage, W. Yang, S. Guertin, S. Sinha Roy, C. A. Carpenter, R. E. Adams, R. H. Schmehl, J. H. Delcamp and J. W. Jurss, *Chem. Commun.*, 2019, **55**, 993–996; (i) A. Genoni, D. N. Chirdon, M. Boniolo, A. Sartorel, S. Bernhard and M. Bonchio, *ACS Catal.*, 2017, **7**, 154–160; (j) D. Hong, Y. Tsukakoshi, H. Kotani, T. Ishizuka and T. Kojima, *J. Am. Chem. Soc.*, 2017, **139**, 6538–6541; (k) H. Rao, L. C. Schmidt, J. Bonin and M. Robert, *Nature*, 2017, **548**, 74–77; (l) D.-C. Liu, Z.-M. Luo, B. M. Aramburu-Trošelj, F. Ma and J.-W. Wang, *Chem. Commun.*, 2023, **59**, 14626–14635.
- (a) C.-F. Leung and T.-C. Lau, *Energy Fuels*, 2021, **35**, 18888–18899; (b) B. Su, M. Zheng, W. Lin, X. F. Lu, D. Luan, S. Wang and X. W. Lou, *Adv. Energy Mater.*, 2023, **13**, 2203290; (c) G. Chen, Z. Zhou, B. Li, X. Lin, C. Yang, Y. Fang, W. Lin, Y. Hou, G. Zhang and S. Wang, *J. Environ. Sci.*, 2024, **140**, 103–112.
- (a) P.-Y. Ho, S.-C. Cheng, F. Yu, Y.-Y. Yeung, W.-X. Ni, C.-C. Ko, C.-F. Leung, T.-C. Lau and M. Robert, *ACS Catal.*, 2023, **13**, 5979–5985; (b) S. E. Lee, A. Nasirian, Y. E. Kim, P. T. Fard, Y. Kim, B. Jeong, S.-J. Kim, J.-O. Baeg and J. Kim, *J. Am. Chem. Soc.*, 2020, **142**, 19142–19149; (c) Y. Wang, T. Liu, L. Chen and D. Chao, *Inorg. Chem.*, 2021, **60**, 5590–5597; (d) H. Takeda, K. Ohashi, A. Sekine and O. Ishitani, *J. Am. Chem. Soc.*, 2016, **138**, 4354–4357; (e) A. Rosas-Hernández, C. Steinlechner, H. Junge and M. Beller, *Green Chem.*, 2017, **19**, 2356–2360; (f) Y. Sakaguchi, A. Call, M. Cibian, K. Yamauchi and K. Sakai, *Chem. Commun.*, 2019, **55**, 8552–8555; (g) X. Zhang, K. Yamauchi and K. Sakai, *ACS Catal.*, 2021, **11**, 10436–10449; (h) J.-W. Wang, X. Zhang, L. Velasco, M. Karnahl, Z. Li, Z.-M. Luo, Y. Huang, J. Yu, W. Hu, X. Zhang, K. Yamauchi, K. Sakai, D. Moonshiram and G. Ouyang, *JACS Au*, 2023, **3**, 1984–1997; (i) L.-L. Gracia, L. Luci, C. Bruschi, L. Sambri, P. Weis, O. Fuhr and C. Bizzarri, *Chem. – Eur. J.*, 2020, **26**, 9929–9937; (j) H. Takeda, H. Kamiyama, K. Okamoto, M. Irimajiri, T. Mizutani, K. Koike, A. Sekine and O. Ishitani, *J. Am. Chem. Soc.*, 2018, **140**, 17241–17254.
- (a) E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja, *Chem. Soc. Rev.*, 2009, **38**, 89–99; (b) C. Costentin, S. Drouet, M. Robert and J.-M. Savéant, *Science*, 2012, **338**, 90–94.
- (a) H. Yuan, B. Cheng, J. Lei, L. Jiang and Z. Han, *Nat. Commun.*, 2021, **12**, 1835; (b) Q. Lei, H. Yuan, J. Du, M. Ming, S. Yang, Y. Chen, J. Lei and Z. Han, *Nat. Commun.*, 2023, **14**, 1087.
- A. Stoumpidis, A. Trapali, M. Poisson, A. Barrozo, S. Bertaina, M. Orio, G. Charalambidis and A. G. Coutsolelos, *ChemCatChem*, 2023, **15**, e202200856.
- (a) J. Bonin, M. Robert and M. Routier, *J. Am. Chem. Soc.*, 2014, **136**, 16768–16771; (b) H. Rao, J. Bonin and M. Robert, *ChemSusChem*, 2017, **10**, 4447–4450.
- M. Kuss-Petermann, M. Orazietti, M. Neuburger, P. Hamm and O. S. Wenger, *J. Am. Chem. Soc.*, 2017, **139**, 5225–5232.
- (a) J. Bonin, A. Maurin and M. Robert, *Coord. Chem. Rev.*, 2017, **334**, 184–198; (b) H. Rao, J. Bonin and M. Robert, *Chem. Commun.*, 2017, **53**, 2830–2833.
- J. Bonin, M. Chaussemier, M. Robert and M. Routier, *ChemCatChem*, 2014, **6**, 3200–3207.